On the exponent of a finite group with an automorphism group of order twelve
نویسندگان
چکیده
منابع مشابه
THE AUTOMORPHISM GROUP OF FINITE GRAPHS
Let G = (V,E) be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if |E| >=[(n - 1)2/2] then |Aut(G)|>1 and |Aut(G)| is even number.
متن کاملAUTOMORPHISM GROUP OF GROUPS OF ORDER pqr
H"{o}lder in 1893 characterized all groups of order $pqr$ where $p>q>r$ are prime numbers. In this paper, by using new presentations of these groups, we compute their full automorphism group.
متن کاملTHE AUTOMORPHISM GROUP OF NON-ABELIAN GROUP OF ORDER p^4
Let G be a finite non-abelian group of order p^4 . In this paper we give a structure theorem for the Sylow p-subgroup, Aut_p(G) , of the automorphism group of G.
متن کاملOn a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملOn the nilpotency class of the automorphism group of some finite p-groups
Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2011
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2010.09.038